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Definitions

1 smooth: means C∞ smooth,

2 We consider a smooth manifold X of dimension 2, since all results are
local, we can imagine X an open subset of R2, equipped with
coordinates x = (z , y),

3 TX : the tangent bundle of X , with coordinates (x , ẋ),

4 Given two vector fields f and g on X we define their Lie bracket (in
coordinates) by adf g := [f , g ] = ∂g

∂x f −
∂f
∂x g ∈ V∞(X )

We consider a smooth sub-manifold F ⊂ TX , locally given by:

F (x , ẋ) = 0. (F)

We assume that F is smooth and that ∂F
∂ẋ 6= 0.
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What is it?
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Motivations - 1

Quadratic sub-manifolds in Physics are common

From [B, 1991]. Consider the attitude control problem for a rigid
spacecraft governed by gas jets. Let θ = (θ1, θ2, θ3) ∈ R3 be the
orientation of the satellite and ω = (ω1, ω2, ω3) ∈ R3 be the angular
velocity measured in a specific frame attached to the satellite. The control
problem is, 

θ̇1 = ω1 ω̇1 = a1ω2ω3

θ̇2 = ω2 ω̇2 = u2
θ̇3 = ω3 ω̇3 = u3

which is the quadratic sub-manifold (in TR3) given by ω̇1 = a1θ̇2θ̇3
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Motivations - 2

From the mathematical point of view-1

Also in [B, 1991], Bonnard started a classification of quadratic control
systems (not of sub-manifolds), he left very interesting questions to
answer.

From the mathematical point of view-2

The following sub-manifold appear in [A-N-N, 2015] as infinitesimal
realisation of the simple Lie Algebra so(r + 2, s + 2) (where (r , s) is the
signature of k).

ż =
1

2

m∑
ij

kij ẏ
i ẏ j .
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ż =
1

2

m∑
ij

kij ẏ
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Equivalence of sub-manifolds

We act on sub-manifolds by smooth diffeomorphisms, x̃ = φ(x) and we
say that two sub-manifold F and F̃ , given by F and F̃ , are
(locally)-equivalent if there exists a (local) diffeomorphism x̃ = φ(x) such
that F (x , ẋ) = F̃ (φ(x),Dφ(x)ẋ).

The Question

When is a given sub-manifolds equivalent to a linear sub-manifold? Does
coordinates x exist such that F can be written,

ω(ẋ) = 0, ω ∈ Λ1(R2)

a(x)ż + b(x)ẏ = 0

This question is immediately generalised by: when is a sub-manifold
equivalent to an affine sub-manifold: ω(ẋ) + h(x) = 0.
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Quadratic sub-manifolds

The problem we address today is the equivalence with a so-called
quadratic sub-manifold:

F (x , ẋ) = ẋTg(x)ẋ + ω(ẋ) + h(x) (Fq)

with g(x) a smooth 2 by 2 symmetric matrix with rk (g(x)) ≥ 1.
Assumptions: We consider the degenerate case rk (g(x)) = 1 in a
neighbourhood. Let A ∈ V∞(X ) such that ker g = sp {A}. We assume
ω(A) 6= 0 (the most general assumption in our degenerate case).

F (x , ẋ) = −a(x)ẏ2 + ż − b(x)ẏ − c(x) (F1
q )

in suitable coordinates.
We say that a sub-manifold is quadratizable if it is equivalent to F1

q .

T. Schmoderer (INSAR) Quadratic sub-manifolds November 6, 2020 8 / 21



Quadratic sub-manifolds

The problem we address today is the equivalence with a so-called
quadratic sub-manifold:
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The picture
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Solving the equivalence problem by feedback equivalence
of affine control systems

The idea: prolong twice the sub-manifold and then see it as an affine
control system.

F1
q ⇐⇒

{
ż = a(z , y)w2 + b(z , y)w + c(z , y)
ẏ = w

,w ∈ R

⇐⇒


ż = a(z , y)w2 + b(z , y)w + c(z , y)
ẏ = w
ẇ = u

u ∈ R (Σ1
q)

u ∈ R is called the control, and x̄ = (z , y ,w) ∈ X × R is the extended
coordinate system.

T. Schmoderer (INSAR) Quadratic sub-manifolds November 6, 2020 10 / 21



Solving the equivalence problem by feedback equivalence
of affine control systems

The idea: prolong twice the sub-manifold and then see it as an affine
control system.

F1
q ⇐⇒

{
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ż = a(z , y)w2 + b(z , y)w + c(z , y)
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ż = a(z , y)w2 + b(z , y)w + c(z , y)
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Transformations diagram

What is the notion of equivalence for affine systems that make this
diagram commute ?

F φ←−−−→ F1
qxy xy


Ż = ξ(Z ,Y ,W )

Ẏ = W

Ẇ = U

?←−−−→


ż = a(x)w2 + b(x)w + c(x)
ẏ = w
ẇ = u
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Feedback equivalence

We consider Σi : ˙̄x = f i (x̄) + g i (x̄)ui with ui ∈ R, i = 1, 2.

Definition ((Affine) Feedback Equivalence)

We say that two affine control systems Σ1 and Σ2 are feedback equivalent
if and only if there exist smooth functions α(x) and β(x), β(·) 6= 0, and a
diffeomorphism φ of X such that:

f 2 =
∂φ

∂x

(
f 1 + αg1

)
,

g2 =
∂φ

∂x

(
g1β

)
.

It is like taking the control u1 = α + βu2. Geometrically, it is the
equivalence of affine distributions A2 = φ?A1 where Ai = f i + sp

{
g i
}

.
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Main result

Theorem (Affine feedback quadratization)

Let Σ be an affine control system on a 3-dimensional smooth manifold
with 1 control. Σ is locally around x̄0 affine feedback equivalent to Σ1

q if,
and only if,

1 g ∧ adf g ∧ [g , adf g ] (x̄0) 6= 0,

2 The structure functions a and b in the decomposition
[g , [g , adf g ]] = a(x̄) [g , adf g ] + b(x̄)adf g mod sp {g} satisfy

9b + 2a2 − 3Lga = 0.

These conditions are checkable by algebraic operations and derivations.
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Idea behind the proof

If, g ∧ adf g(x̄0) 6= 0 then an affine control system is feedback equivalent
to, 

ż = ξ(x , y ,w)
ẏ = w
ẇ = u

, f =

 ξ
w
0

 , g =

0
0
1


Observe that if [g , [g , adf g ]] = 0 (i.e. ∂3ξ

∂w3 = 0) then the system is
quadratic in this coordinate system.
The idea of the proof is to see how [g , [g , adf g ]] = 0 is transformed under
the feedback transformations (α, β).
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ẇ = u

, f =

 ξ
w
0

 , g =

0
0
1


Observe that if [g , [g , adf g ]] = 0 (i.e. ∂3ξ

∂w3 = 0) then the system is
quadratic in this coordinate system.
The idea of the proof is to see how [g , [g , adf g ]] = 0 is transformed under
the feedback transformations (α, β).

T. Schmoderer (INSAR) Quadratic sub-manifolds November 6, 2020 14 / 21



Idea behind the proof

If, g ∧ adf g(x̄0) 6= 0 then an affine control system is feedback equivalent
to, 
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The theorem for sub-manifolds

The theorem is stated for affine control systems. When directly
considering the parametrization of a sub-manifold,

ż = ξ(x , y ,w)
ẏ = w
ẇ = u

g =
∂

∂w
, f = ξ(x̄)

∂

∂z
+ w

∂

∂y
(F)

we have the simplification of the conditions,

1 ξ(2)(x̄0) 6= 0,

2 a(x) = ξ(3)

ξ(2)
, b = 0 and the relation reads,

2

(
ξ(3)

ξ(2)

)2

− 3

(
ξ(3)

ξ(2)

)′

= 0

5
(
ξ(3)
)2
− 3ξ(4)ξ(2) = 0
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Classification of quadratic sub-manifolds

Going back to our sub-manifolds. Once we have distinguished a special
class of sub-manifolds, we wan to exhibit normal forms for that class. For
example, for a linear sub-manifold ω(ẋ) = 0 the problem of classification is
the problem of classification of distributions.
In our case, we have:

ż = a(x)ẏ2 + b(x)ẏ + c(x). (Fq)

With a(x0) 6= 0. In normal forms we will normalise a = 1 (we can always
do that), b = 0 and study various forms of c .

T. Schmoderer (INSAR) Quadratic sub-manifolds November 6, 2020 16 / 21



Classification of quadratic sub-manifolds

Going back to our sub-manifolds. Once we have distinguished a special
class of sub-manifolds, we wan to exhibit normal forms for that class. For
example, for a linear sub-manifold ω(ẋ) = 0 the problem of classification is
the problem of classification of distributions.
In our case, we have:
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Parametrization and equivalence

To deal with this problem, we consider the parametrization of F1
q given by{

ż = a(x)w2+ b(x)w + c(x)
ẏ = w

(Ξ1
q)

here, w play the role of control and Ξ1
q can be seen as a nonlinear control

system. We act on Ξ1
q by diffeomorphisms x̃ = φ(x) and reparametrization

(they are nonlinear feedback) w̃ = ψ(z , y ,w) (with ∂ψ
∂w 6= 0).

Since we have to preserve the quadratic structure, we allow
reparametrizations of the shape w̃ = β(z , y)w only. We identify the
vector fields A = a(x) ∂

∂z and B = b(x) ∂
∂z + ∂

∂y .
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Parametrization and equivalence

Notice that since a(x0) 6= 0 we have A ∧ B 6= 0. We call (A,B) a frame.

Structure of the transformations

On (A,B) the reparametrization, w̃ = βw , acts by

Ã = β2A, B̃ = βB.

Observe that if a = 1 and b = 0 then [A,B] = 0.

The question is then when does a reparametrization exist such that[
Ã, B̃

]
= 0?
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Main result

Theorem

There exists a diffeomorphism and a reparametrization such that ã = 1
and b̃ = 0 if, and only if,

[A, [A,B]] = 0,⇐⇒ ∂

∂z

(
a
∂

∂z

(
b

a

))
= 0.

Moreover, c is an invariant of the sub-manifold.

Then we have:

c = 0 ⇐⇒ c̃ = 0
LAc = 0 ⇐⇒ LÃc̃ = 0 ⇐⇒ c̃(z̃ , ỹ) = γ(ỹ)
LBc = 0 ⇐⇒ LB̃ c̃ = 0 ⇐⇒ c̃(z̃ , ỹ) = γ(z̃)
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Conclusion and perspectives

We presented an introduction to the equivalence and classification problem
of quadratic sub-manifolds in TR2.

There is a way that directly gives necessary and sufficient conditions for
the equivalence of Σ with ż = w2. This is done by the study of the Lie
algebra of infinitesimal symmetries, and is easily generalisable in higher
dimension (however when m > 2, checkablity of the conditions is hard).

We have results for the equivalence and classification of quadratic
sub-manifolds in TR3:

ż = a(x)(ẏ20 + εẏ21 ) + b0(x)ẏ0 + b1(x)ẏ1 + c(x).

The case when ε = −1 is called hyperbolic and is easy to solve (the
geometry is nice). The case when ε = 1 is called elliptic, and is a bit more
trickier to deal with.
The case when ε = 0 (i.e parabolic) is still resisting to us.
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